Improved RBF Neural Network for Nonlinear Identification System

نویسندگان

  • Jian Guo
  • Jing Gong
  • Jinbang Xu
چکیده

Standard particle swarm optimization (SPSO) algorithm was modified by escape strategy of the particle velocity, and an escape PSO (EPSO) was proposed to overcome the shortcomings of being trapped in local optima because of premature convergence. To enhance the performance of radial basis function (RBF) neural network, the EPSO is combined with RBF neural network to form a EPSON hybrid algorithm. Compared with the hybrid algorithm of BP neural network (PSOBP), the experiment results show that EPSON has less adjustable parameters, faster convergence speed and higher precision in the nondifferentiable II. RADIAL BASIS FUNCTION NETWORK Artificial neural network (ANN) which is composed of a large number of neurons is a complex system of nonlinear dynamic and adaptive organization It has a highly nonlinear mapping capability RBF network is better than BP network in approximation capability classification and learning velocity. RBF was first proposed by Powell[9] and introduced into neural network literature. It has been widely used in pattern recognition, parameter identification, clustering analysis, etc. [10]. The topological structure of RBF network is commonly divided into three layers. The input node of the RBF network sends signals to the hidden layer and the output node is usually a simple linear function As input to output is nonlinear, and the network output is linear to adjustable parameter mapping the weight value of the network can be recursively calculated. The RBF network mathematica1 model is described as function identification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF SCALLOP DOMES BY NEURAL NETWORKS

This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Combined Approach of Rbf Neural Nework, Genetic Algorithm and Local Search and Its Application in Identification of a Nonlinear Process

The identification of nonlinear systems by artificial neural networks has been successfully applied in many applications. In this context, the radial basis function neural network (RBF-NN) is a powerful approach for nonlinear identification. A RBF neural network has an input layer, a hidden layer and an output layer. The neurons in the hidden layer contain Gaussian transfer functions whose outp...

متن کامل

Nonlinear Identification Using Neural Network Combined with Training Based on Particle Swarm Optimization

Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the identification of mathematical models typically nonlinear systems is vital in many fields of engineering. A variety of system identification techniques are applied to the modeling of processes dynamics. Recently, the identification of nonlinear systems by artificial neural networks has been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009